
TR— 79 1 160A S c T r T F A  
SEP 79 R KL

_ _  

_ U
_____ END

DOC



~ T1
T7, 

—
~—.-.- 1-~~

-- 

~ 
~~~~~~~ -,

AF~~~.1~I. 7 9 - 1 1 6 0

LEVEV

• 
>I

~~

UNWERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND
20742

~9 ; i
4s f) ur 2

Approved for publie rel.ei,,T Approv.d for publis r1e ~~e;diatrLk
~

&Uo; uu1.~aM~.4. dj~tribut1.cin



:~: ~~~~~ ~~~~~~~

I
,

~~~~ ~
1/ - — —

iJ’L~~~
1

~~
I L’

LOG OIN~EThR 1~STRICFED
O17~4~ P ~~L ~~~~~L ~C!~~~

t s) /
~~~~~~~~~ r~~gr  Reinhard1iClette . fl Li ~~Coiçuter Vision Laboratory -. ~\ I
th iversity of Jt~iy1andCollege Park, ND 20742

ci j~~~~~it~. *.~~
, _ ,

ABSTRACT

The languages accepted by UTCA ’s in log diameter time
are the same as those accepted by UTCA ’s in which a cell’s
new state depends only on its sons’ states and not on its
own preceding state. This set of languages remains the same
if we allow log diameter + constant time, but it increases
if we allow 2 log diameter time. It is also shown that this
set is the same as the set of languages generated by a special
class of “power of 2” OL—systeins.

AIR R ~~~~~~E O F SCIE~ TU i I C  ~ .~~~. ( ~ ,)

This techn.1.Cal ~ ~ i.. b )
approved ~ 01’ p) .~~~.IC t . -~~

Distrtb~
tt
~
fl ~~ u~

11m1t~~.

~;0j~~~~~iirot~matton 
Orticer

The support of the U.S. Air Force Office of Scientific
Research under Grant AFOSR—77-327l is gratefully acknowledged ,
as is the help of Kathryn Riley in preparing this paper. The
author wishes to thank Prof. A. Rosenfeld for suggesting this
topic and for providing the pleasant conditions under which
this paper was written.

*perm~~ent address: Friedrich Schiller University, Jena,
German Democratic Republic

/ ,/ 
/ ) 



_ _ _ _ _ _

1. Basic concepts of UTCA ’s

The notion of a bottom—up triangle cellular acceptor

was introduced by Dyer (13. Such a model for computation is

a special case of parallel processing. A bottom—up triangle

cellular acceptor (UTCA)A is defined as a 4-tuple (S,I,F,6),

where S is a finite, nonempty set of states, I ~ S is a set

of input states with ,#EI, where is a special quiescent

state, # is a special boundary state, F ~ S is a set of

accepting states, and ô:S3-~S is called the state transition

function satisfying d (s11 s2,s3) = * jf f s1 = # , for arbitrary

in S, and d(~ ~E1 ~~ ) =

Such a UTCA A = <S , I ,F, S> works on data structures in the

form of a complete binary tree of height n with 2n+1 initial

vertices which are in the state # .  A configuration of A is an

assignment of states from S to each non-* vertex of such a

tree. A step of computation consists of a simultaneous state

transition at each non—# vertex of such a tree; if v11v2 denote

the left and right son of a vertex V in this tree, and if in a

certain configuration the vertices v,v1,v2 are in the states

~‘~ 1’~ 2’ 
respectively , then ~S(s,s1,s2) is the state of v in

the next configuratiI~n. An input ~E(I~{*})*of length 2~ is

initially in the 2’~
’ base (leaf) vertices of this tree, i.e.,

in each base ~~rtex we have one symbol (state) of c~. In such

an input configuration all other vertices of the tree are in

L~~~. 

‘

~~~~ 3 •i~.~~J 

- 

.~ 

-— —

~~

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.
~~ ~~~~~~~~~~~~~~~~~~~ 



the quiescent state ~~~. The following figure shows an input

configuration for the case n — 2.

/~~
/ \ / \

i
5
k i~i~ 7~* * * 1* * * *

For this case, after the first step of computation we have

the following configuration:

5 ( ~~,s31s4 )

/ \
6(51,1,1) ~~s21#,#) 6 ( 3 3 1 *1 1) 6(541*11)

/ \
* *  * 1  # 1  1 *

An input string aE (I_C*})* is accepted by a UTCA A if f given

the initial configuration defined by a, the root of the tree

enters an accepting state after some number of steps. Let L

be a language over the alphabet I-{~ ,*}. The language L is

accepted by a UTCA A if f L is the set of all strings

such that a~ . . .  ~ , where length (a~ . . .  ~~) =

for some n � 0, is accepted by A. A UTCA A is said to accept

a language L within time T (IaI ) if f for any string a in the

language, A accepts the string within T(2~) steps, where

-~~~~~~~~~~~~~~~~~~ —~~~~~~~~~~ —~~ _ _ _ _ _ _  A



~ .-..- - . - -~..—
—.-- -

~~ —--.----— .--.-.--~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . —
.-

~~~
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~

?:N~N, 
and 2~ is the smallest power of 2 equal to or greater

than length (a) = a . T (1 a I) = log Ia I is called ~~j

diameter time. Finally, let UTCA - T I M E ( T ( I a I  )) be the class

of all languages which can be accepted by UTCA ’s within time

T(IaI ) .

Example 1. L = {a%mt 2m is a power of 2 } is not a regular

language. The following UTCA A = <S, I ,F ,  6> accepts L within

time log la l :
S = {a,b,t,fiEt,*}~ 

I = {a,b,~~,*}, F = (ti , and 6 is

specified as

current state left son’s state right son’s state next state

a a •a

b b b

a b t

all, other combinations of states f

A string aE{a,b}* is accepted by A if f the states a,b meet

together in the root, and not otherwise.
Accession For
NTIS G~ A&I
D~ C TAB

Ja~ti1•jcat10~___________
-~~~~~~~~

~~~~~~~~~~~~~~~~~~~ ‘~~~~~~ c

DJ~~t al

------ --- ---

. J i ~~~~T~~~T
1
~~ ~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . - , - -
~~
.—.——,

~
--

~~ ~~~~~~~~~~~~~~~ 
. - •~~~

_
~—. 

~~~~~~~~~~ 
.‘.—;..- —.—--— . ~Iuuu~

2. Strong UTCA ’s

Strong bottom-up triangle cellular acceptors (SUTCA ’s)

are a simplification of UTCA’s in which the next state

depends on the states of the two sons only, and not on the

current state of the vertex. The formal definition of this

SUTCA follows the UTCA definition; only the state transition

function needs to be modified to 6:S2-’S. Let L(SUTCA) be

the class of all languages which can be accepted by SUTCA ’s

(in any time).

Theorem 1: L(SUTCA) = UTCA - TINE (log lal )

Proof: ~: Let L be a language which is accepted by an SUTCA

A = <S ,I ,F , 6>. Suppose that there exists a string aEL such

that A accepts a in more than log t e l steps. Thus, for the

input configuration defined by a, the first wave of non-

states does not reach the root in a final state sEF , but

there exists a forthcoming wave of information from the base

vertices to the root for which the root enters an accepting

state. This forthcoming wave of information starts with base

vertices which are all in the state 6(1,1) already. Thus, L

is either 0 or the set (I_{~ ,#})*. In both cases, L can be

accepted by an SUTCA within time log a . We thus have the

result that every language which can be accepted by an SUTCA

can be accepted by an SUTCA within time log a ‘ and thus by

a UTCA within time log a

~: Let L be accepted by a UTCA A = <S,I,F,6> within time

Log la l .  If aEL then A accepts a after log t a t steps at most,

-

~

--.-.- -

~

--, . --- ~~~~~~~~~~~~~~~~~ ___ 

. - -~~~~~-~~~~~~~~~~~~~ -.- .



_____ - . —.—
-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.- - 

______

i.e., only the first wave of information from the base ver-

4 tices to the root is relevant to whether a string will be

accepted or not. Above layer 0 (base vertices) this

first wave of information enters each vertex in state

only, according to our convention that a(~ ,h,E j) = ~~. Thus,

we can restrict 6(
~
,sl,s2) = S3 to 6’(sl,s2,) = s3, i.e.,

L can be accepted by an SUTCA.~

In our further considerations we will use Theorem 1 to

simplify the definition of UTCA’s which accept languages

within time log l e t .

_ — --~-  
. . -

L - . .
~~~~~~

.  . .. .  ______

— — - -— .~~~~~~~~- - —-i’- —~~~~~---~~ — -~,--~~~~~~~~~



.-.-..-
.. .—.... -.—~~~---—--— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3. More time

A natural question is how much time may be required for

a UTCA to accept a language which is not in the class

UTCA — TIME (log le t ).

Theorem 2. (a) UTCA - TINE (log t a t ) = UTCA - TIME (log lal+m) ,

for a l l m � 0 .

(b) UTCA - TIME (log t a t ) ~ UTCA - TIME (2 log at ).

Proof: (a) Let L be accepted by a UTCA A = <S , I ,F , 6> within

time log l e t  + m, for a certain m � 0. Then, a string a is

accepted by A if f at least the (m+l)st  wave of information

from the base vertices to the root transforms the root into

an accepting state. During these m+l waves of information

each vertex enters m+l states. We build up a new UTCA A =

<S’,I,F’ ,&’> which accepts L within time log l e t . Without

loss of generality, we assume that 6(s,#,#) = s, for all sEl.

Now, let 5’ = ~~~~~~ and let 6’ be specified as follows:

Layer 1:

6’(a,b) = (a1,a21...,am+i), for a1 = 6(~j~a1b)1 a2 =

a 41 = 6(am,a,b), and a,b E I.

Layers k, k�2:

6’((a1,a2,...,am+1), (b i~b21~~• •~
bm+1)) = (c1,c2,...,cm+1),

for c1 = 6(~ ,a1,b1), c2 = cS (ci,a2,b2),...,cm+i = 6(cm ,am+1,bm+i).

Then, A ’  accepts a string a if f given the initial configuration

defined by a, the root of A ’ enters a state (ci,c2,...;cm+i)

such that at least one c~ is in F. The UTCA A’ accepts the

same language as A does.

_ _ _ _ _ _ _

~



r ~

•

~

--- 

~~~~~~~~~~~~~ 

.

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~~~~~~~~

. -

~~~~

-.--- - -

~~

— . 

__
~5

___
~

_ . - ---
~

- . -.
~
----,- —,-

~~~
-

I
(b) Let L = (w€ {a ,b}* t the number of a’s in w is equal

to or greater than the number of b’s in w}. According to [1),

L can be accepted by a UTCA within time 2~1og l e t . Suppose

that the UTCA A accepts L within time log l e t . In the tree

of this UTCA, each vertex v in layer k computes at time step

k+1 a state s representing the states in v’s base at time step

0. Assume that at time step k+l for a vertex v in layer k+1

the left son v ’ enters an accepting state, and the right son

v” enters a non-accepting state. At time step k+2 the vertex

v must enter an accepting state if f the concatenation of the

bases of v ’ and v” at time step 0 is in L. For this decision,

the states of v’ and v” at time step k+l must encode the dif-

ferences between the numbers of a’s and b’s in their bases at

time step 0. With respect to the finite number of states of

A , and since k can be any natural number , such an encoding is

impossible. D

This theorem can be used to speed up algorithms for UTCA ’s

which operate within time log tat-Ha , for m�1. As an example ,

DYER shows in (11 that each regular language can be accepted

by a UTCA within time log lat+1 . According to Theorem 2(a)

and Example 1, we have

REG UTCA - TIME (log a t ),

where REG denotes the class of all regular languages. For

instance, the language of all strings of a’s and b’s in which

-—.-

~ 

—...-. .~~ 
. .



——-—-, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
—

~
-— --.--—

the b’s are connected have at most one run of b’s, is a

‘

~ regular language and can therefore be accepted by a UTCA

within time log t a t . This improves a result in (11 .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ___ — _I~1l ___ __1 _.~_ _______ ~~~~~~~~



F! 
---- - , . - ,

~~~

— . -

~~~~~~

—-

~~~~

-

~~

---- .

4. A comparison with Lindenmayer systems

The language classes of the CHOMSKY hierarchy do not

seem to be especially appropriate as UTCA language classes.

Example 2. L = {a%ma%ml4m is a power of 21 is not a

context-f ree language. Analogously to Example 1, this lan-

guage can be accepted by a UTCA within time log t a t . For this,

we use the following state transition function:

left son’s state right son’s state next state

a a a

b b b

a b t ’

t

all other combinations of states f

Only t is an accepting state.

Example 3. L = ( lwE{a,b}*} is a context-free language.

According to (1], no UTCA can accept L in less than tat /2 time.

A better approach seems to be to compare UTCA language

classes with the languages of LINDENMAYER systems (see, e.g., (23).

W~e will show that the class UTCA - TIME (log t e E )  can be ~~~~~ . —

.

characterized through a special class of L-systems.

A deterministic power-of-two EOL system (DPTEOL) S is

defined as a 4—tuple <~,P,A ,B>, where E is a finite , nonempty

alphabet, B~Z is the basic alphabet, A~E are the axioms, and P

is a set of productions a~bc, for a,b,c E E , satisfying the

following two conditions:



P ~~~~~~~~~~~~~~~~~~ - - . - ,- .‘ ,~ - .- .-~-- .—-~---—--—,--~..- ,—.-.-—--“-,. ~~~~~~~~~~~~~~~~~~~~~~~

(a) for all aEE there exists a production a-*bc in p ,

for some b,cEE ;

(b) for all a,b,c,dEE , if a-~cd and b-~cd are productions

in P then a=b.

Such a system generates a language L~B*. As a first step,

we can apply productions in P to the axioms in A. If we have

reached a word aia2...amEE* at step k, at step k+1 we apply

productions in P simultaneously to all symbols a1, i = 1,2, . . . ,m.

A string a lies in L if f eEB*, and a can be generated by this

process.

Example 4. Let S =<Z ,P,{l1,B>, where E = {a ,b,O ,l,x , y},

B = {a,b}, and P = {l-’-lO ,Ol ,ll ,ab ,ba ,bb; 0~ O 0 , aa; a-~’xy ;

b-’yx; x-~xx; y-’yy}. This system generates the language

L ={wE{a,b}* ti wj is a power of 2, wl~ 2, and in w there is

one b at least}.

Let DPTEOLk be the class of DPTEOL systems with k axioms

at most, for k~1. Let UTCAk be the class of tJTCA’s with k

final states at most, for k�l. Furthermore, L (DPTEOLk)

denotes the class of all languages which can be generated by

a system in DPTEOLk.

Theorem 3. (a) L (DPTEOLk) = UTCAk - TIME (log at) , for all

k �1.

(b) UTCAk - TIME (log a () ~~~ UTCAk+i - TIME (log a I ),

for all k � 1.

(c) L (DPTEOL) = UTCA - TIME (logta~).

~



Proof. (a) ~: Let S = <E ,P,{al,...,ak},B> be a DPTEOL

system. We built up an SUTCA A = <ZU C I R , * } , su{~~,*},

which accepts those languages generated by 5:

6 ( a ,b) = c if c-’-ab is in P, and

cS (a,b) = if c-~ab is not in P,

for a,b

Let 4 be the set of all strings in E* with length

which can be generated by S, and let L~ be the set of all

strings in (ZU {~~})* with length 2
1 which can be accepted by

A , i.e., we regard all such strings as input strings for A .

For £ = 0 we have L~ = L~ = {a ll a2,...,ak
}. Let £~1. Then ,

~EI4 iff a = b
1clb2c2...b c with m 2h 1 , d~-’~b~c~ in

P, for i = 1,...,m, and did2~~~•dm 
in L~~

1

iff  a = b1c1b2c2.. ~
b
m
Cm with m = 2~~ l, d(b11c1)=d~ ,

for i = 1,. ..,m , and d1d2~~••dm in L2~~
1

iff  aEL~ .

Thus , a can be generated by S if f a can be accepted by A ,

for all aEB* .

~: Let A = <S,I,T,cS> be an SUTCA with F = 
~~~~~~~~~~~~~~~

We build up a DPTEOL system S = <SU{x1,.. • l X
m

}
~ 

P
~
C5l~~~~~

5k)l

which generates those languages accepted by A:

z1
-~z2z3 in P if 6 (z2,z3) = z1, and for all zESU{x1,.

for which according to this rule a production z-’-z’z” is

not yet in P, we take the productions z~x1x21x1~x1x1,

x2~ x2x2 in P (cp. Example 4).



- 
— 

- -  

~~~~~

---- .- 

~~~~

.

Analogously to the first part of this proof using sets

we can prove that S generates the same language that A accepts.

(b) For k�l, we use L = {ab ,abab,...,(ab)k~~ }. This

finite language lies in UTCAk+i 
- TIME (log t a t ), but not in

UTCA
k 

- TINE (log a I).

Let 6(a,b) = t1. Then it follows that iS (t11 t1) =

S(t 2 , t 2 ) = t3,..., 6(t~ ,t,~) = tk+ll where F = {t l,t2,...,tk+l },

and t1,,t2,...,t,~~~ are pairwise different. Otherwise, the
£infinite language L = {(ab) I £�1} would be accepted.

(c) This follows immediately from (a). 0

As a last remark, it can easily be proved that the class

UTCA - TIME (log t a t ) is closed under union , intersection ,

and complement.

1 .  _  -
— —

~~1~ ~~~~~ •-~~~
- -“--

~
--

~— — —  - ‘I

_ _  — ~~~~~~~~~~~~~~~~ -~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.—~~ -~~~~~~~~~~~~——~~~~ ~~~~~~~~



References

(1] C. R. DYER: Augmented Cellular Automata for Image
Analysis. Dissertation, University of Maryland, College
Park, 1979.

- (2] G. ROZENBERG, A. SAL OMAA (Eds.): L Systems. Lecture Notes
- in Computer Science 15 (1974), Springer Verlag.

_ _ _ _ _ _ _  
_ _  

--- I

~__.._: ::: ~~~~~~~~~~~~~~~~~~~~
-

~~~~~~~~~~~~~~~~~~~~ —-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  .~ ~~. ..- .- —-



.—.~~-. --- ,~~~~~~~ - --— --~

unciassirieci
sicu rnlv CLASSIFICATION OF 1 141$ PAGC (IPII.n D... I.,.d)

~~~~~~~~~ ~~~~~ u~~ k I r A r I t l k I  0A19 RE A D INSTRUCTIONS
r~ U~ J~~%~~ ~~~~~ vmLr’ ~~~~~~~~~~~~~ ‘~ “~~~~~ BEFORE COMPLETIN G FORM

I. R&PO~~1 NUM SCR 2. GOVT AC CCSSION NO 3. RCCIPIENVS CATALOG NUMSLR

4. flT LC (and 3.~b*f tl.) S. TYPt OF R~~POWT S PCRIOO COVCRLD
LOG DIAMETER RESTRICTED BOTTOM-UP
TRIANGLE CELLULAR ACCEPTORS (UTCA ’s) Technical

I. PIRFORMING ORG~~~JPORT NUNIIR

__________________________________________ TR-809
7. AU1’IIOR(a) S. CONTRACI’ OR GRANT NUMICR(.J

Reinhard Kiette AFOSR-77—3271

S. P(RFORMING ORGANIZATION NAME AND ADDRESS ID. PROGRAM CLEMENT. PROJECT . TASK
Computer Vision Laboratory ARE A S WOR K UNI T NUM SERS

University of Maryland /College Park , MD 20742
II. COHTROU.JNG OFFICE NAME AND ADDRESS 2. REPORT DATE

Math. & Info. Sciences, AFOSR/NM September 1979
Bolling AFB 13. NUMSER OF PAG ES

Washington, DC 20332 15
14. MONITORING AGENCY NAM E I AOORESS(lS dflt .rsnI Ito. Co.woLUn4 Oh io.) IS. SECURITY CLASS. (oh eM. ,.p.et)

Unclassified

15.. OECLA$SIFICATION/OOWNGRAOIMG
SCM LOULE

IS. ~~STRISU 11ON STATEMENT (01 hS. R.port)
Approved for public release; distribution unlimited.

I?. OI$rRIIuTION STAT EMENT (of fh• ab.tt ~~ t tot.tod Sn ai.c* 20, II mU., nt ho. R.po.t)

IS. SUPPLEMENTARY NOTES

II. K~~Y WO RDS (Continua. on rev. ,.. old. ii nec...., , and ldsntiiy by block nsanb.r)

Cellular automata
Formal languages
L—systems
Parallel processing

--—----~~~-. t~
. ASSYRACT (Continua. an tovir•. aid. If nic... ~~~ and ldanUIy by bI.Ck manb.v)

- ~ The languages accepted by UTCA ’s in log diameter time are the same
as those accepted by UTCA ’s in which a cell’s new state depends only
on its eons’ states and not on its own preceding state. This set of
languages remains the same if we allow log diameter + constant time,
but it increases if we allow 2 log diameter time. It is also shown
that this set is the same as the set of languages generated by a
special class of ~power of 2~ 0L-systems.~~~~~~~~

DD 
~~~~

4
7I 1473 CDI TION OF 1 NOV U IS OSIOL ETC Unclassified .

SECURITY CLASSIFICAtION OF 1141$ PaGE (ø?,.ø Dot. tnl.red)

~

_1

~

_

~

i ~~~~~~~~~~~~~~~~~~~~~ —~~ --__--_ 


